
GraphAlchemy Documentation
Release 0.1.0

Jeffrey Tratner

July 31, 2012

CONTENTS

1 Base Classes 3

2 Creating Declarative Base Classes for SQLAlchemy 5

3 Creating Base Classes for Flask-SQLAlchemy 7

4 Other Methods 9

5 Notes on integrating GraphAlchemy with web frameworks 11
5.1 Flask . 11
5.2 Pyramid (prev Pylons) . 11
5.3 webapp2 . 11
5.4 Incompatible frameworks (for now) . 11

6 Indices and tables 13

Python Module Index 15

i

ii

GraphAlchemy Documentation, Release 0.1.0

Contents:

CONTENTS 1

GraphAlchemy Documentation, Release 0.1.0

2 CONTENTS

CHAPTER

ONE

BASE CLASSES

All Node and Edge classes are subclasses of BaseNode and BaseEdge.

3

GraphAlchemy Documentation, Release 0.1.0

4 Chapter 1. Base Classes

CHAPTER

TWO

CREATING DECLARATIVE BASE
CLASSES FOR SQLALCHEMY

graphalchemy.sqlmodels.create_base_classes(NodeClass, EdgeClass, [NodeTable = None,
[EdgeTable = None, [declared_attr, [Col-
umn, [Integer, [Unicode, [Float, [Boolean,
[ForeignKey, [relationship, [backref, [Base =
None,)

creates base classes (BaseEdge and BaseNode) for use as mixins for graph nodes and edges. ALL parameters
must be strings convertible to unicode! Classes need to be subclassed/composited with a declarative_base class

Parameters:

param NodeTable the table for node (unicode)

param NodeClass the class for node (unicode)

param EdgeTable the table for edge (unicode)

param EdgeClass the class for edge (unicode)

param Base (optional) if a Base is passed, it will be added to the class type for you, thereby
requiring no subclassing on your part.

type Base SQLAlchemy declarative base

Returns tuple of Node, Edge classes

Return type (Node, Edge)

NOTE: To overwrite the default inheritance, you can pass in any SQLAlchemy classes used in creating the
functions:

declared_attr, Column, Unicode, Integer, Float, Boolean,
relationship, backref, ForeignKey

5

GraphAlchemy Documentation, Release 0.1.0

6 Chapter 2. Creating Declarative Base Classes for SQLAlchemy

CHAPTER

THREE

CREATING BASE CLASSES FOR
FLASK-SQLALCHEMY

graphalchemy.sqlmodels.create_flask_classes(db, NodeClass, EdgeClass,
NodeTable=None, EdgeTable=None)

Convenience method for creating Node and Edge base classes for use with Flask-SQLAlchemy. Has nearly
the same signature as create_base_classes() But does not take in any overriding methods. Only Node-
Class and EdgeClass are required.

The one required parameter is db, which you must create first from the sqlalchemy directions. Example usage:

>>> from flask import Flask
>>> from flask.ext.sqlalchemy import SQLAlchemy
>>> from graphalchemy.sqlmodelss import create_flask_classes
>>>
>>> app = Flask(__name__)
>>> app.config[’SQLALCHEMY_DATABASE_URI’] = ’sqlite:////tmp/test.db’
>>> db = SQLAlchemy(app)
>>>
>>> Node, Edge = create_flask_classes(db, "Node", "Edge")

At this point, you can subclass Node and Edge to add additional traits; however, both Node and Edge will already
be subclasses of db.Model, so you don’t need to mix that in.

Or you can just start up your database with:

>>> db.create_all()

Otherwise, the classes created by create_flask_classes() and create_base_classes() are
pretty much the same, except that Flask-SQLAlchemy provides some additional features that can be ac-
cessed on the Models.

7

GraphAlchemy Documentation, Release 0.1.0

8 Chapter 3. Creating Base Classes for Flask-SQLAlchemy

CHAPTER

FOUR

OTHER METHODS

graphalchemy.sqlmodels.sqlite_connect(dbpath, metadata[, create_engine[, sessionmaker[,
echo=True]]])

return an sqllite connection to the given dbpath. Optional arguments default to sqlalchemy functions.

Parameter:

param dbpath path (relative or absolute) to database (unicode/string) NOT “sqlite://”

param metadata something that supports create_all() to create/load tables and has a bind
attribute

type metadata should create tables with create_all()

type create_engine function (dbpath) -> engine

param sessionmaker (optional) must take bind=engine, return a class that can be called
to create a session

type sessionamker function (bind=engine) –> Session

param event event creator for engine (from SQLAlchemy)

param bool enforce_fk set database to enforce foreign key relationships

default enforce_fk True

Returns:

returns (engine, session)

raises ValueError if passed a path that does not exist or a non-valid path.

9

GraphAlchemy Documentation, Release 0.1.0

10 Chapter 4. Other Methods

CHAPTER

FIVE

NOTES ON INTEGRATING
GRAPHALCHEMY WITH WEB

FRAMEWORKS

5.1 Flask

There are a few different options for using Flask with SQLAlchemy, which you can read about on Flask’s docs.

5.1.1 Using Flask-SQLAlchemy plugin

The only real caveat is that if you want to use Flask-SQLAlchemy, you should use the
:func‘~graphalchemy.sqlmodels.create_flask_classes‘ function, and pass it an SQLAlchemy instance (usually
called db).

5.2 Pyramid (prev Pylons)

Pyramid has a cookbook entry on using SQLAlchemy with Pyramid. But it’s basically just normal use of SQLAlchemy,
with a few specific notes on using Pyramid’s DBSession for sessions and some advanced topics that aren’t really
relevant here.

5.3 webapp2

webapp2 should work without a problem, just import it and use it like you would with SQLAlchemy (probably just
use it straight up?)

5.4 Incompatible frameworks (for now)

5.4.1 Google App Engine

Google App Engine doesn’t have a (standard) relational database, but a future version of graphalchemy will have
a version that works with App Engine (though it may or may not be a really efficient solution).

11

http://flask.pocoo.org/docs/patterns/sqlalchemy
http://webapp-improved.appspot.com/
https://developers.google.com/appengine/

GraphAlchemy Documentation, Release 0.1.0

5.4.2 Django

Django uses its own ORM (which you can replace with SQLAlchemy, but it means you lose much of Django’s
functionality). There may be a future version of graphalchemy that will support Django, but for the moment,
you’d have to choose to use SQLAlchemy.

12 Chapter 5. Notes on integrating GraphAlchemy with web frameworks

CHAPTER

SIX

INDICES AND TABLES

• genindex

• modindex

• search

13

GraphAlchemy Documentation, Release 0.1.0

14 Chapter 6. Indices and tables

PYTHON MODULE INDEX

g
graphalchemy, 1

15

	Base Classes
	Creating Declarative Base Classes for SQLAlchemy
	Creating Base Classes for Flask-SQLAlchemy
	Other Methods
	Notes on integrating GraphAlchemy with web frameworks
	Flask
	Pyramid (prev Pylons)
	webapp2
	Incompatible frameworks (for now)

	Indices and tables
	Python Module Index

